

MDA + IRS IN UGANDA: modelling and practice

GATES foundation

ASTMH Symposium #141

IRS and Drug-Based Malaria Control: Interaction, Timing and Next Steps

Dorothy Echodu October 31, 2018 New Orleans

REPUBLIC OF UGANDA MINISTRY OF HEALTH

MDA + IRS in Uganda: Modelling and Practice

Outline

Openmalaria Modelling: IRS prolongs MDA impact for duration of insecticide efficacy

Elliott R, Smith D, Echodu, D. (2018) *Mathematical Biosciences.* Volume 300.

3

Ross-MacDonald Modelling: Synchronous timing is best, impact scales with R₀

Elliott R, Smith D, Echodu, D. (2018) Submitted.

9/12/18

Same effect in *Openmalaria:* Co-timing impact grows with transmission intensity

Elliott R, Smith D, Echodu D. (2018) Submitted.

Openmalaria Modelling: synergy or seasonality?

Impact of one IRS and one MDA, applied over 1yr

Openmalaria Modelling: synchronous deployment more powerful than seasonality, at least for this annual EIR (100)

Impact of one IRS and one MDA, applied over 1yr

Katakwi Rotary Malaria Project: IRS + MDA (Uganda)

PROJECT SUMMARY

Description and study site

Objectives

Katakwi District Sequence of malaria control interventions in 3 subcounties (Phase 1)

- Kapujan: (IRS + MDA, 4 rounds
- Toroma: (IRS, 4 rounds)
- Magoro (std of care)
- •LLINs in all three subcounties April 2017

Primary objective:

• Phase I: To evaluate the impact of population based IRS in combination with MDA as compared with no MDA on clinical and entomological malaria indicators.

PROJECT SUMMARY

Interventions	
	Phase I (2016-2018): controlled before and after (CBA) pre/post, analyzed with difference in differences
	• <u>IRS</u> in Kapujan and Toroma with pirimiphos-methyl, 4 rounds every 8 months. • <u>MDA</u> for all eligible residents in Kapujan with DHA-P , 4 rounds every 8 months.
	Limitations: • one cluster per arm • non-randomized
Evaluation Methods & Sample Size	 Cross sectional community surveys: 200 households (~800 individuals) in each sub county assessed at baseline and then every 6 months for the first two years. Entomology surveys: Mosquitoes from 30 households per arm per month using CDC light traps Health facility surveillance

Intervention/Survey Scheduling

Phase 2

MDA Coverage

Round	Treated/Enumerated	1 st Dose	T/E	2 nd Dose	T/E	3 rd Dose
Round 1	13,353/16,577	81%	-	-	-	-
Round 2	12,712/16,620	77%	12,469/16,620	75.02%	12,465/16,620	75%
Round 3	12,366/16,596	74%	12,344/16,596	74.38%	12,343/16,596	74%

- Coverage → coverage of entire enumerated population, not eligible measured by digital check/barcode scan (R 2 and 3) and paper forms (R 1)
- Compliance measured through VHT follow-up of MDA Day 1 (R 2 & 3)

IRS Coverage

Round Structures Sprayed/Found

- Round 1 97% Arm B | 99% Arm A
- Round 2 97% Arm B | 99% Arm A
- Round 3 97% Arm B | 99% Arm A

- Coverage is usual program metric, backed by household enumeration/structure numbering
- Coverage and acceptability unusually high for Uganda

Intervention/Survey Scheduling

RDT prevalence by village for Surveys 1, 2, 3: differential impact at 3 months

Overall RDT prevalence: 3 months post IRS + MDA

K. Colborn 17

Overall microscopy prevalence: 7 months post IRS + MDA

Overall RDT prevalence: 7 months post IRS + MDA

What about mobility? *Openmalaria* modelling: MDA + IRS, with imported infections, realistic EIR

Imported infections *appear* to help....but

R. Elliott

Openmalaria modelling: IRS only, with imported infections, realistic EIR

Imported infections degrade MDA impact, but mainly by degrading IRS. Not the whole answer!

R. Elliott

• Two models predict strong timing-dependent synergy

 Preliminary results show protection at 3 months, possibly also at 7 months
– not as dramatic as predicted

• Mobility might "explain" lackluster MDA, but not while IRS is so effective

THANK YOU Study Team & Partners

Ø

Pilgrim Africa Dr. Dorothy Echodu, Pl Dr. Katy Hurd Dr. Ronald Mulebeke Dr. Fred Bukenya Tom Eganyu Wycliff Odude April Clements Deanna Hines

Boise State University Dr. Richard Elliott

vectorlink

University of Colorado Dr. Kathryn Colborn Chong Kim

President's Malaria Initiative

University of Makerere, IDRC

vectorlink

Dr. Adoke Yeka, Pl Dr. Joaniter Nankabirwa Kilama Maxwell

<u>VectorLink</u> James Kironda

CDC Dr. Lauren Lewis Dr. Peter Thomas

> <u>USAID</u> Dr. Meera Venkatesan

> > Rotary

THE REPUBLIC OF UGA

IDM

<u>MOH</u> Dr. Humphrey Wanzira Dr. Jimmy Opigo Wycliff Odude Mariam Nabukenya

Institute for Disease Modeling Special thanks to: Dr. Caitlin Bever

BILL& MELINDA

GATES foundation

Confirmed malaria cases under 10: by health center

Confirmed malaria cases under 10: by county of residence

Eastern Uganda Rainfall 2016/2017

CDC Light Trap Monitoring

