November 21, 2019 ASTMH Session 4 Malaria: Vectors and Vector Control

The cost of measuring impact

RCT trial methodologies for vector control

Molly Robertson¹, Joe Wagman¹, Rose Zulliger², Abuchahama Saifodine³, Baltazar Candrinho⁴, Jason Richardson⁵, Laurence Slutsker¹, Carlos Chaccour⁶, Francisco Saute⁶

NgenIRS Project Partners: **Evaluating** the Evidence

CDC

Randomized Controlled Trial Setup - Mopeia
 Methodologies used to measure impact
 Results by Method
 Summary and Discussion

Cluster Randomized Controlled Trial Setup

RCT Setup

EMJ Global HealthCombination of indoor residual
spraying with long-lasting insecticide-
treated nets for malaria control in
Zambezia, Mozambique: a cluster
randomised trial and cost-effectiveness
study protocol

Carlos J Chaccour,^{1,2} Sergi Alonso,^{1,2} Rose Zulliger,³ Joe Wagman,⁴ Abuchahama Saifodine,⁵ Baltazar Candrinho,⁶ Eusébio Macete,² Joe Brew,¹ Christen Fornadel,⁷ Hidayat Kassim,⁸ Lourdes Loch,⁹ Charfudin Sacoor,² Kenyssony Varela,⁹ Cara L Carty,⁴ Molly Robertson,^{2,4} Francisco Saute²

BMJ Glob Health 2018;3:e000610. doi:10.1136/bmjgh-2017-000610

Protocol

RCT Setup

HOW TO DESIGN VECTOR CONTROL EFFICACY TRIALS

Guidance on phase III vector control field trial design provided by the Vector Control Advisory Group

who/HTM/NTD/VEM/2017.03

2.1.2 Choosing outcome measures

he Global Fund

The best epidemiological measure is generally the incidence of clinical disease, diseasespecific mortality, or the prevalence of infection...

Methods used to measure the impact of IRS

Methods

Active Cohort

- 86 Cluster (43 per arm)
- 18 children per cluster (774 per arm)
- Monthly follow up
- u5 infection incidence
- Health behavior & HH spending data

Enhanced Passive Surveillance

Continual

•

- Village of origin for each suspected case recorded at public health facilities and by community health workers
- Case incidence symptomatic cases
 presenting to the public health system

Cross Sectional Surveys

- April 2017 & April 2018
 - 385 Surveys per arm (770 Total)
- Community infection prevalence
- Health behavior & HH spending data

Entomological Surveillance

- 10 clusters (5 per arm)
- 9 houses per arm (8 CDCLT and 1 HLC)
- Monthly follow up

Costing

- Program-wide ingredient-based approach scaled to Mopeia District
- Deterministic and probabilistic cost-effective analyses

Population measured by each methodology

Results by Method

Results – Active Cohort

Monthly Cohort Incidence By Spray Status

LLIN ownership before and after the June 2017 campaign:

Results – Passive Case Surveillance

Results – Cross-Sectional Surveys

	2017				2018			
	Spray Status		OR (95% CI)	p-value	Spray Status		OR (95% CI)	p-value
	No-IRS	IRS			No-IRS	IRS		
Under 5	109 / 231 (47%)	100 / 202 (50%)	1.10 (0.62,1.93)	0.7473	121 / 195 (62%)	96 / 205 (47%)	0.54 (0.31,0.92)	0.0241
Overall	183 / 418 (44%)	171 / 397 (43%)	0.97 (0.65,1.46)	0.8894	173 / 407 (43%)	136 / 398 (34%)	0.70 (0.49,1.00)	0.051

Results – Cross-Sectional Surveys

	2017				2018			
	Spray Status		OR (95% CI)	p-value	Spray Status		OR (95% CI)	p-value
	No-IRS	IRS			No-IRS	IRS		
Under 5	109 / 231 (47%)	100 / 202 (50%)	1.10 (0.62,1.93)	0.7473	121 / 195 (62%)	96 / 205 (47%)	0.54 (0.31,0.92)	0.0241
Overall	183 / 418 (44%)	171 / 397 (43%)	0.97 (0.65,1.46)	0.8894	173 / 407 (43%)	136 / 398 (34%)	0.70 (0.49,1.00)	0.051

		2017		2018			
	Spray	Status	n velve	Spray Status			
	No IRS	IRS	p-value	No IRS	IRS	p-value	
Gender Female	169 / 420 (40.2%)	174 / 397 (43.8%)	0.2986	210 / 407 (51.6%)	186 / 398 (46.7%)	0.1676	
Age under 5	232 / 420 (55.2%)	202 / 397 (50.9%)	0.2123	195 / 407 (47.9%)	205 / 398 (51.5%)	0.3076	
Distance to nearest HF ^a	7.1	6.8	0.7702	6.9	7.1	0.8821	
ITN ownership	235 / 419 (56.1%)	204 / 397 (51.4%)	0.1783	384 / 407 (94.3%)	379 / 398 (95.2%)	0.5758	
Electricity in the household	2 / 420 (0.5%)	19 / 397 (4.8%)	0.0001	2 / 407 (0.5%)	4 / 398 (1.0%)	0.4465	
Head of household with any formal education	206 / 419 (49.2%)	203 / 397 (51.1%)	0.574	299 / 407 (73.5%)	292 / 398 (73.4%)	0.975	
Head of household farmer	350 / 419 (83.5%)	344 / 397 (86.6%)	0.2119	368 / 407 (90.4%)	348 / 398 (87.4%)	0.1776	

RESEARCH

Open Access

The economic burden of malaria on households and the health system in a high transmission district of Mozambique

Sergi Alonso^{1,2,3*}, Carlos J. Chaccour^{1,2}, Eldo Elobolobo¹, Amilcar Nacima¹, Baltazar Candrinho⁴, Abuchahama Saifodine⁵, Francisco Saute¹, Molly Robertson⁶ and Rose Zulliger⁷

Alonso et al. Malar J (2019) 18:360 https://doi.org/10.1186/s12936-019-2995-4

Results - Comparison

Passive Case Incidence (u5) By Spray Status 1600 100% 2017 IRS 2016 IRS LLIN Campaign **RDT Confirmed Cases per 1,000 Months at Risk** 90% 1400 80% 1200 70% Infection Prevalence 1000 60% 800 50% 40% 600 30% 400 -No IRS 20% -IRS 200 10% 0 0% Aug-18 Sep-18 Oct-18 Nov-17 Mar-18 Apr-18 Dec-16 Jan-17 Feb-17 Mar-17 Apr-17 May-17 Jun-17 Jul-17 Aug-17 Sep-17 Oct-17 Dec-17 Jan-18 Feb-18 May-18 Jun-18 Jul-18 **Study Month**

Results – Comparison

12:00pm – 1:45pm

Results – Entomological Surveillance

Monthly trends in <u>total</u> *An. funestus* specimens collected in CDCLTs, by IRS status.

Crude reductions in total mosquito density:

- 63% in year 1
- 85% in year 2

Over the 2 years: an average reduction of 33 mosquitoes per house per month

1735 - A Good Spray: Entomological Surveillance Results from a Cluster Randomized Trial to Evaluate the Impact of a Third Generation Indoor Residual Spray Product on Malaria Transmission in Mozambique

Joseph Wagman¹, Aklilu Seyoum², Stephen Magesa³, Kenyssony Varela³, Rodaly Muthoni³, Christelle Gogue¹, Kenzie Tynuv¹, Carlos Chaccour⁴, Francisco Saute⁵, Rose Zulliger⁶, Abuchahama Saifodine⁷, Baltazar Candrinho⁸, Jason Richardson⁹, Christen Forndel⁹, Laurence Slutsker¹⁰, Molly Robertson¹

Summary & Discussion

Methods

Active Cohort

- 86 Cluster (43 per arm)
- 18 children per cluster (774 per arm)
- Monthly follow up
- True u5 infection incidence
- Health behavior & HH spending data

Enhanced Passive Surveillance

Continual

- Village of origin for each suspected case recorded at public health facilities and by community health workers
- Case incidence symptomatic cases presenting to the public health system

Cross Sectional Surveys

- April 2017 & April 2018
 - 385 Surveys per arm (770 Total)
- Community infection prevalence
- Health behavior & HH spending data

Entomological Surveillance

- 10 clusters (5 per arm)
- 9 houses per arm (8 CDCLT and 1 HLC)
- Monthly follow up

Costing

- Program-wide ingredient-based approach scaled to Mopeia District
- Deterministic cost-effective analysis

Active Most expensive (35%)

Passive Middle Expensive (28%)

Cross Least expensive (20%)

Costing

(5%)

Ento (12%)

Acknowledgements

The NgenIRS (Next Generation IRS) project is a partnership, led by IVCC, that includes the US President's Malaria Initiative (PMI), the Global Fund, Abt Associates, and PATH. NgenIRS works in close collaboration with leading insecticide manufacturers, national malaria control and elimination programs and other stakeholders to save lives and protect health by reducing transmission of malaria through affordable indoor residual spraying of long-lasting insecticides. NgenIRS is funded by UNITAID and this work has been co-funded by PMI. For more information please visit <u>www.ivcc.com/market-access/ngenirs</u> or email David McGuire, Programme Director (david.mcguire@ivcc.com).

