

African leadership in vector control product evaluation: the case of CREC/LSHTM/PAMVERC Facility, GLP-certified Facility in Benin, West Africa

By Dr. Corine Ngufor Associate Professor, LSHTM Facility Manager and Lead Scientist CREC/LSHTM Collaborative Research Programme

IVCC stakeholder Forum, October 2023

www.crec-lshtm.org

Malaria Vector Control

Two core interventions:

Long-lasting insecticidal nets

Insecticide: Pyrethroids

Indoor Residual Spraying

Insecticides: Pyrethroids, carbamates, organophosphates and DDT

ITNs and IRS contributed nearly 80% reduction in malaria

Source: Bhatt et al, 2015

Insecticide resistance in malaria vectors

Insecticide resistance: 1990 to 2000

Insecticide resistance: 2015 to 2020

Resistance is widespread and increasing in intensity across Africa

Source: irmapper.com

Mitigating insecticide resistance in malaria vectors

WHO Call to action - 2012

0	Plan and implement insecticide resistance management strategies in malaria-endemic countries.
0	Ensure proper, timely entomological and resistance monitoring and effective data management.
	Develop new, innovative vector control tools.
	Fill gaps in knowledge on mechanisms of insecticide resistance and the impact of current insecticide resistance management strategies.
	Ensure that enabling mechanisms (advocacy, human and financial resources) are in place.

IR, insecticide resistance

strategy

5

Five pillars

Pillar I: Application of insecticide resistance management (IRM) strategies in malaria vector control programmes.

- Rotations
- Mixtures
- Mosaics
- Combinations

Pillar III: Identification of new chemical products (for IRS and LLINs) with new modes of action

Norms, standards and processes underpinning WHO vector control policy development

Evaluation pathway for vector Control Interventions

Q

+

+

+

+

WHO Prequalification assessment (PQT/VCP)

Following applicable WHO testing guidelines

Identifying new vector control products - what is involved?

Good laboratory practice for generation of efficacy data for vector control product prequalification

WHO - Prequalification of Medical Products (IVDs, Medicines, Vaccines and Immunization Devices, Vector Control)

Contact us 👻 | Glossary & Acronyms | FAQ

	EVENTS NEWS	ABOUT
--	-------------	-------

www.crec-lshtm.org

The CREC/LSHTM/PAMVERC GLP-certified research facility

• Performs laboratory, semi field, community trials of vector control products since 2005.

What did we do to achieve GLP certification?

Infrastructural Improvements and equipment management

- Improved quality of infrastructure ensure separation of processes and environmental control.
- Established equipment management system (inventory, calibration, maintenance, retirement etc).
 - Balances
 - Potter tower
 - Shaker bath
 - Incubators
 - Fume hoods
 - Data loggers
 - Refrigerators
 - Etc

Personnel structure and training

Staff are trained and assessed for competence every 1-2 years

SN	TRAINING	TITLE	TRAINING
	CODE		FREQUENCY
1	101-BL	Phase 1 laboratory techniques in the evaluation of	24 months
		Long-lasting insecticidal nets (LLINs)	
2	102-BL	Phase 1 laboratory techniques in the evaluation of	24 months
		insecticides for Indoor Residual Spraying (IRS)	
3	103-BL	Resistance Bioassay techniques	24 months
4	104-BL	Safety and waste management	12 months
5	105-FS	Phase 2 experimental hut evaluation of LLINs and IRS	24 months
6	106-IA	Insectary and Animal House Techniques	24 months
7	107-QA	Good Laboratory practice	24 months
8	108-QA	Study Director and Quality assurance training	12 months
9	109-GS	Administrative and financial procedures	24 months
10	110-GS	General support and housekeeping	24 months
11	111-DM	Archiving procedures	24 months
12	112-DM	Data management procedures	12 months

Management of test items (insecticidal products)

- Reception, registration, storage and usage of all test items received by the Facility
- Avoid contamination between products
- Ensure staff safety

Data management and archiving

 Developed system for double data entry, computer validation systems, physical and electronic archives for longterm storage of project data

Quality Assurance Unit

- Quality assurance unit set up and trained.
- Ensure continuous compliance through inspections and follow-up
- Assess performance through quality indicators

Unit	Quality Indicators (annual)	Limits
Insectary	Total number of adult mosquito cages produced:	
-	Kisumu strain	250 min
	Vkper strain	150 min
	Cove strain	150 min
Animal house	Percentage of animal deaths in a year on total animals maintained at the	30% max
	Proportion of in-house animal births to total animals each year	20% min
Bioassay laboratory	Percentage of laboratory assays performed with control mortality >10%	
	Cone tests	10% max
	Cube tests	10% max
	Cylinder tests	10% max
	CDC Bottle tests	10% max
	Tunnel tests with control mortality > 10% and blood feeding < 50%	20%
	Overall percentage of block substrates rejected during spray applications using potter tower	25% max
	Proportion of tests conducted outside required temperature range	10% max
	Proportion of raw data sheets with hand errors	30% max
Field site	Overall level of mortality in control buts for all but trials performed	20% max
Tield Site	during the year	20/0 1110
	Proportion of raw data sheets with hand errors	30% max
	Proportion of IRS hut applications performed outside +/-20% target	10% max
Data Management	Number of computer breakdown/major faults in a year	3 max
	Proportion of Cove-Cotonou trips in which a project vehicle broke down	5% max
	Proportion of procurements with extreme delays between demand and delivery (>14days for local items and >3 months for international items)	3 days
	Number of unexplained absences and lateness to work	5%
Archive	Time lap between official end of study and archiving	3 months max
Whole Facility	Number of days with complete power failures lasting >6hours Staff satisfaction	0 days

Increase in number of projects and vector control product brands tested

Number of new projects

- 57 vector control product testing projects after GLP
- 29 new brands of vector control products (IRS, ITNs, SR, personal repellent) tested since GLP accreditation up to 2022

Increase in employee participation and satisfaction

- 'I feel proud working in a GLP laboratory with high standards'
- 'I am more confident that my work is actively contributing to fighting malaria'
- 'I have learned so many new skills since we acquired GLP and my professionalism has improved substantially.'

www.crec-lshtm.org

Vector Control Product Testing (for WHO/PQ listing and country registration)

CREC/LSHTM/PAMVERC – Phase I GLP laboratory testing of IRS products

Different types of substrates (concrete, mud, tile, wood, etc...)

WHO cone bioassays (1 week and monthly intervals) for residual activity assessment

Potter spray tower

CREC/LSHTM/PAMVERC – Phase I GLP laboratory testing of ITN products

Regeneration time

Efficacy and wash resisistance (cone and tunnel tests)

CREC/LSHTM/PAMVERC – Phase II GLP experimental hut evaluation of insecticide products

- 74 experimental huts in Cove, Benin
- Vector population resistant to pyrethroids but susceptible to carbamates and OPs

Used for testing indoor vector control tools such as IRS insecticides, ITNs, spatial repellents etc

- LN: Non-inferiority (mortality and blood-feeding inhibition) to reference LN
- IRS: Non-inferiority (mortality) to reference IRS product

CREC/LSHTM/PAMVERC – Community trials

- Epidemiological impact
- Durability evaluation of nets
- Bioefficacy testing
- Chemical activity
- E.g New Nets Project RCT

The New

Nets Project

- IRS campaign
- Efficacy evaluation
- Residual activity
- Operational feasibility
- Community acceptance
- E.g VECTRON T500 community trial

Management of test systems (insectary mosquitoes)

- Separation of insectary strains to control contamination
- Development of insectary management manuals and SOPs
- Characterisation and assessment of fitness every 3-4 months

					Phenotypic	Source of	genotypic
		Strains	Colony name	Species	characterization	collection	characterization
			An. gambiae			BEI ressources	
	1	Kisumu	Kisumu	An. gambiae	susceptible to all insec.	(Kenya)	None
			An. gambiae		pyrethroid and DDT		
	2	VKPer	Vkper	An. gambiae	resistant	Burkina Faso	Kdr (L1014F)
							Kdr (L1014F);
			An. gambiae sl		pyrethroid and DDT		Overexpressed P450s
	3	Covè	Covè	An. coluzzii	resistant	Covè; Benin	(CYP6P3)
					Resistant to	BEI ressources	Ace-1 mutation; Kdr
					pyrethroids, DDT, OPs		(L1014F); over-expressed
H	4	Akron	An. coluzzi Akron	An. coluzzii	and carbamates	(Benin)	oxidases
					pyrethroid and DDT	BEI ressources	
	5	FUMOZ	An. FUMOZ	An. funestus	resistant	(Mozambique)	CYP6P9a and CYP6P9b
					susceptible to all		
	6	Aedes ROCK	Aedes ROCK	Aedes aegypti	insecticide	BEI ressources	None
		Aedes			pyrethroid and DDT		
	7	Dandji	Aedes Dandji	Aedes aegypti	resistant	Dandji; Benin	Not characterized
		Culex			pyrethroid and DDT		
	8	Dandji	Culex Dandji	Cx. quinquefasciatus	resistant	Dandji; Benin	Not characterized
					pyrethroid and DDT		
	9	Culex Covè	Culex Covè	Cx. quinquefasciatus	resistant	Covè; Benin	Not characterized
					susceptible to all		
	10	Culex TPRI	Culex TPRI	Cx. quinquefasciatus	insecticide	Tanzania	Not characterized

Development of next generation ITN Products

RESEARCH ARTICLE

A Chlorfenapyr Mixture Net Interceptor[®] G2 Shows High Efficacy and Wash Durability against Resistant Mosquitoes in West Africa

Raphael N'Guessan $^{1,2,3},$ Abibatou Odjo 2, Corine Ngufor $^{1,2,3},$ David Malone 4, Mark Rowland $^{1,3}{}_{*}$

natureresearch

Check for updates

OPEN Efficacy of Royal Guard, a new alpha-cypermethrin and pyriproxyfen treated mosquito net, against pyrethroid-resistant malaria vectors

Corine Ngufor^{1,2,3}, Abel Agbevo^{2,3}, Josias Fagbohoun^{2,3}, Augustin Fongnikin^{2,3} & Mark Rowland^{1,3}

Science Translational Medicine Contents - News - Careers - Journals -

RESEARCH ARTICLE

VECTOR CONTROL

Efficacy of the Olyset Duo net against insecticide-resistant mosquito vectors of malaria

Corine Ngufor, ^{1,2,3}* Raphael N'Guessan, ^{1,2,3} Josias Fagbohoun,² Damien Todjinou,² Abibath Odjo,² David Malone,⁴ Hanafy Ismail,⁵ Martin Akogbeto,² Mark Rowland^{1,3}

- Perform non-inferiority testing of second in class ITN products

Development of new IRS Products

RESEARCH ARTICLE

Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid resistant *Anopheles gambiae* sl in Southern Benin

 $Corine \ Ngufor^{1,2\,*}, Augustin \ Fongnikin^2, Mark \ Rowland^1, \ Raphael \ N'Guessan^{1,2}$

Ngufor *et al. Malar J (2020) 19:249* https://doi.org/10.1186/s12936-020-03325-2

Malaria Journal

RESEARCH

Open Access

Indoor spraying with chlorfenapyr (a pyrrole insecticide) provides residual control of pyrethroid-resistant malaria vectors in southern Benin

Corine Ngufor^{1,2,3}*, Augustin Fongnikin^{2,3}, Neil Hobbs^{1,2}, Martial Gbegbo^{2,3}, Laurette Kiki^{2,3}, Abibath Odjo^{2,3}, Martin Akogbeto^{2,3} and Mark Rowland^{1,3}

Fongnikin et al. Parasites Vectors (2020) 13:466 https://doi.org/10.1186/s13071-020-04341-6 Parasites & Vectors

RESEARCH

Efficacy of Fludora[®] Fusion (a mixture of deltamethrin and clothianidin) for indoor residual spraying against pyrethroid-resistant malaria vectors: laboratory and experimental hut evaluation

Augustin Fongnikin^{2,3}, Nadia Houeto^{2,3}, Abel Agbevo^{2,3}, Abibath Odjo^{2,3}, Thomas Syme^{1,2,3}, Raphael N'Guessan¹ and Corine Ngufor^{1,2,3*}

scientific reports

Check for updates

OPEN Efficacy of broflanilide (VECTRON T500), a new meta-diamide insecticide, for indoor residual spraying against pyrethroid-resistant malaria vectors

Corine Ngufor^{1,2,3©}, Renaud Govoetchan^{1,2,3}, Augustin Fongnikin^{2,3}, Estelle Vigninou², Thomas Syme^{1,2,3}, Martin Akogbeto² & Mark Rowland^{1,3}

oa

Epidemiological trials of next generation ITNs

۵

oa

Tanzania trial - published

Effectiveness and cost-effectiveness against malaria of three types of dual-active-ingredient long-lasting insecticidal nets (LLINs) compared with pyrethroid-only LLINs in Tanzania: a four-arm, cluster-randomised trial

Jacklin F Mosha*, Manisha A Kulkarni*, Eliud Lukole, Nancy S Matowo, Catherine Pitt, Louisa A Messenger, Elizabeth Mallya, Mohamed Jumanne, Tatu Aziz, Robert Kaaya, Boniface A Shirima, Gladness Isaya, Monica Taljaard, Jacklin Martin, Ramadhan Hashim, Charles Thickstun, Alphaxard Manjurano, Immo Kleinschmidt, Franklin W Mosha, Mark Rowland, Natacha Protopopoff

- 1. Interceptor (pyrethroid-only)
- 2. Olyset Plus (pyrethroid-PBO)
- 3. Royal Guard (pyrethroid + pyriproxyfen)
- 4. Interceptor G2 (pyrethroid-CFP)

 Interceptor G2 induced 44% reduction in malaria incidence compared to standard pyrethroid LLIN over 2 years Benin trial - NNP -published

Efficacy of pyriproxyfen-pyrethroid long-lasting insecticidal nets (LLINs) and chlorfenapyr-pyrethroid LLINs compared with pyrethroid-only LLINs for malaria control in Benin: a cluster-randomised, superiority trial

Manfred Accrombessi*, Jackie Cook*, Edouard Dangbenon, Boulais Yovogan, Hilaire Akpovi, Arthur Sovi, Constantin Adoha, Landry Assongba, Aboubacar Sidick, Bruno Akinro, Razaki Ossè, Filémon Tokponnon, Rock Aikpon, Aurore Ogouyemi-Hounto, Germain Gil Padonou, Immo Kleinschmidt, Louisa A Messenger, Mark Rowland, Corine Ngufor, Natacha Protopopoff†, Martin C Akogbeto†

- 1. Interceptor (pyrethroid-only)
- 2. Royal Guard (pyrethroid + pyriproxyfen)
- 3. Interceptor G2 (pyrethroid-CFP)

2 October, 2023

1010

Other types of studies

- Spatial repellents
- Personal repellents
- Larvicides
- Household spray products
- Durability testing of novel ITNs distributed in other African countries e.g Mozambique (PATH), Liberia (PMI/ABT)

Operational research to support NMCP:

- Chemoprevention of malaria UNITAID Funded PSI/LSHTM/CREC IPTI+ project
- Evaluation of malaria RDTs PATH/PMI INSIGHTS

www.crec-lshtm.org

CREC/LSHTM – Capacity building

- MSc and PhD students from LSHTM and local Universities in Benin.
- Internships in vector control
- Training of vector control experts: IR testing, conduct of bioefficacy testing (cone, tunnel, bottle bioassay), etc..

Challenges

• Sustainability – funding challenges

- transforming to a hybrid contract research organization (CRO) and academic research unit.

- expanding beyond vector control product evaluation e.g analytical chemistry, diagnostics, genomics, consultancies etc

• Ensuring equitable partnerships

- building partnerships based on mutual benefit and respect
- building south-south/regional collaborations to foster research

Advanced training

- Soft skills
- Business development/management
- Data analysis and modelling
- Artificial intelligence

Strategic Focus 2022-2027

Vector control product testing

- Expand product testing range e.g ATSBs, Aedes control etc
- Expand testing capacity – more laboratory space, repellents

Molecular characterisation

- Establish molecular laboratory
- Mosquito infection studies

Chemical analysis of insecticide products

- Establish an analytical chemistry laboratory (HPLC and GC) to GLP
- Become a reference centre for ITN quality assessment.

Operational research

- Expand capacity for operational research in vector control to support decision making at national and regional levels.
- Pilot evaluations of new vector control tools
- Modelling of vector control data for decision making

Training and capacity building

Establish online
training courses in
entomology and VC
product testing

Vector control product testing south-south partnerships

Tanzania, Moshi

Tanzania, Muheza

Cameroon

Ethiopia (TDRC)

Cote D'Ivoire

Burkina Faso

IFAKARA HEALTH INSTITUTE research | training | services

ACKNOWLEDGEMENTS

MAJOR FUNDERS

BILL& MELINDA GATES foundation

www.crec-lshtm.org

INDUSTRY PARTNERS

WYORKOOL

www.crec-lshtm.org

CREC/LSHTM/PAMVERC team